The goal of ProficiencyBased Learning Simplified is to ensure that students acquire the most essential knowledge and skills they will need to succeed in school, higher education, the modern workplace, and adult life. Therefore, systems of assessment and verifying proficiency should prioritize enduring knowledge and skills—i.e., graduation standards and related performance indicators.
Verifying achievement of graduation standards—the learning expectations students must achieve to be eligible for grade promotion or a diploma—should be based on a student’s achievement of performance indicators over time. The achievement of graduation standards requires students to develop a strong knowledge base and sophisticated conceptual understanding. Performance indicators describe, in more finegrained detail, the specific knowledge and skills that students must acquire to demonstrate they have met a graduation standard—in effect, performance indicators break down comprehensive graduation standards into their component parts. The following examples, taken from our exemplar graduation standards for English language arts and mathematics, will help to illustrate the relationship between graduation standards and performance indicators:
Sample Graduation Standard: English Language Arts
Conduct research projects based on focused questions, demonstrating understanding of the subject.
Performance Indicators
 Collect relevant information from multiple print and digital sources.
 Integrate accurate information into the text selectively and purposefully to maintain the flow of ideas.
 Follow a standard citation format, avoiding plagiarism and overreliance on any one source.
 Draw evidence from literary or informational texts to support analysis, reflection and research.
Sample Graduation Standard: Mathematics
Reason and model quantitatively, using units and number systems to solve problems.
Performance Indicators
 Extend the properties of exponents to rational exponents.
 Use the properties of rational and irrational numbers.
 Reason quantitatively and use units to solve problems.
 Perform arithmetic operations with complex numbers.
 Use complex numbers in polynomial identities and equations.
This document describes two primary ways that schools and educators can verify a student’s achievement of graduation standards.
Verification Methods
Using aggregate scores on performance indicators, districts and schools can verify the achievement of graduation standards in two primary ways: BodyofEvidence Verification or Mathematical Verification.
 BodyofEvidence Verification: Determining proficiency using a body of evidence requires a review and evaluation of student work and assessment scores. The review and evaluation process may vary in both format and intensity, but verifying proficiency requires that educators use common criteria to evaluate student performance consistently from work sample to work sample or assessment to assessment. For example, teachers working independently may use agreedupon criteria to evaluate student work, a team of educators may review a student portfolio using a common rubric, or a student may demonstrate proficiency through an exhibition of learning that is evaluated by a review committee using the same consistently applied criteria.
 Mathematical Verification: Determining proficiency using mathematical verification requires teachers to use a common formula that aggregates assessment results on performance indicators over time to determine the achievement of a graduation standard.
Approach  Pros  Cons 

BodyofEvidence Verification 


Mathematical Verification 


BodyofEvidence Verification
Determining proficiency using a bodyofevidence process requires students to gather work samples and other evidence of academic accomplishment, present the evidence to educators, and have it scored against a set of common criteria defined in a rubric or scoring guide. There are two primary approaches to bodyofevidence verification that schools typically use:
Approach  Process 

Portfolios  Students collect work samples and other evidence of learning from courses and academic experiences that teachers or review committees assess using common criteria at the end of a defined instructional period, such as a term or school year. 
Exhibitions  Students work toward a culminating demonstration of learning that teachers or review committees assess using common criteria at the end of a defined instructional period, such as a term or school year. 
Portfolios and exhibitions typically address a wide range of contentarea and crosscurricular standards, including critical thinking and problem solving, reading and writing proficiency, or habits of work and character traits (e.g., teamwork, preparedness, responsibility, or persistence). In coursebased portfolio and exhibition assessments, individual teachers use common, agreedupon criteria to evaluate a body of work that students have completed over the course of an instructional period. For crosscurricular portfolios and exhibitions, groups of contentarea teachers or review committees evaluate the work. It should be noted that portfolios do not require students to create new work, but to collect and present past work, evidence, and accomplishments—although exhibitions can incorporate examples of past work as well. In many schools, endofterm portfolios and exhibitions are also used as a way to introduce greater creativity and flexibility into the assessment process. For example, students may incorporate work samples and evidence from outsideofschool learning experiences, such as internships, dualenrollment courses, vacationbreak programs, or selfdirected projects. The approach may also allow for greater instructional flexibility because teachers will be less focused on generating a certain number of scores, using certain types of assessments, over the course of an instructional period. To use these methods effectively, schools need to invest time and resources in their bodyofevidence assessment system. For example, teachers are often trained in portfolio evaluation and consistent scoring; students are given time and support to create their portfolios; students and their parents are informed about the criteria and how the evidence will be evaluated; and the schools give teachers and review committees time during the regular school day to evaluate the portfolios.
Mathematical Verification
Mathematical verification can be computed in three primary ways:
Approach  Process 

Formula  Performanceindicator scores are calculated using a common mathematical formula, such as an average, to determine a student’s proficiency level on each graduation standard. 
Majority  Students are required to demonstrate achievement of a majority of performance indicators to meet a graduation standard. 
Totality  Students are required to demonstrate achievement of all performance indicators to meet a graduation standard. 
The following table illustrates how the three mathematical approaches may be used to determine whether a student has met a graduation standard. In this example, we use a 4.0 scale in which a score of 3.0 meets the standard:
Mathematics Graduation Standard: Number and Quantity
Reason and model quantitatively, using units and number systems to solve problems
Performance Indicator  Average  Majority  Totality 

Extend the properties of exponents to rational exponents  3.5  3.5  3.5 
Use the properties of rational and irrational numbers  3.0  3.0  3.0 
Reason quantitatively and use units to solve problems  3.5  3.5  3.5 
Perform arithmetic operations with complex numbers  3.0  3.0  3.0 
Use complex numbers in polynomial identities and equations  2.0  2.0  2.0 
Meets Graduation Standard  YES: The average (3.0) meets the proficiency benchmark  YES: Four of five performance indicators were achieved  NO: Not all performance indicators were achieved 
→ Download Verifying Proficiency: Graduation Standards (.pdf)
ProficiencyBased Learning Simplified by Great Schools Partnership is licensed under a Creative Commons AttributionNonCommercialShareAlike 4.0 International License.